Abstract
In this work we present a hybrid physics-based and data-driven learning approach to construct surrogate models for concurrent multiscale simulations of complex material behavior. We start from robust but inflexible physics-based constitutive models and increase their expressivity by allowing a subset of their material parameters to change in time according to an evolution operator learned from data. This leads to a flexible hybrid model combining a data-driven encoder and a physics-based decoder. Apart from introducing physics-motivated bias to the resulting surrogate, the internal variables of the decoder act as a memory mechanism that allows path dependency to arise naturally. We demonstrate the capabilities of the approach by combining an FNN encoder with several plasticity decoders and training the model to reproduce the macroscopic behavior of fiber-reinforced composites. The hybrid models are able to provide reasonable predictions of unloading/reloading behavior while being trained exclusively on monotonic data. Furthermore, in contrast to traditional surrogates mapping strains to stresses, the specific architecture of the hybrid model allows for lossless dimensionality reduction and straightforward enforcement of frame invariance by using strain invariants as the feature space of the encoder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.