Abstract

Purpose Approximately 700,000 people in the USA have chronic kidney disease requiring dialysis. Protein-energy wasting (PEW), a condition of advanced catabolism, contributes to three-year survival rates of 50%. PEW occurs at all levels of Body Mass Index (BMI) but is devastating for those people at the extremes. Treatment for PEW depends on an accurate understanding of energy expenditure. Previous research established that current methods of identifying PEW and assessing adequate treatments are imprecise. This includes disease-specific equations for estimated resting energy expenditure (eREE). In this study, we applied machine learning (ML) modelling techniques to a clinical database of dialysis patients. We assessed the precision of the ML algorithms relative to the best-performing traditional equation, the MHDE. Methods This was a secondary analysis of the Rutgers Nutrition and Kidney Database. To build the ML models we divided the population into test and validation sets. Eleven ML models were run and optimized, with the best three selected by the lowest root mean squared error (RMSE) from measured REE. Values for eREE were generated for each ML model and for the MHDE. We compared precision using Bland-Altman plots. Results Individuals were 41.4% female and 82.0% African American. The mean age was 56.4 ± 11.1 years, and the median BMI was 28.8 (IQR = 24.8 − 34.0) kg/m2. The best ML models were SVR, Linear Regression and Elastic net with RMSE of 103.6 kcal, 119.0 kcal and 121.1 kcal respectively. The SVR demonstrated the greatest precision, with 91.2% of values falling within acceptable limits. This compared to 47.1% for the MHDE. The models using non-linear techniques were precise across extremes of BMI. Conclusion ML improves precision in calculating eREE for dialysis patients, including those most vulnerable for PEW. Further development for clinical use is a priority.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.