Abstract
BackgroundWe sought to assess the impact of various perioperative factors on the risk of severe complications and post-surgical mortality using a novel maching learning technique. MethodsData on patients undergoing resection for HCC were obtained from an international, multi-institutional database between 2000 and 2020. Gradient boosted trees were utilized to construct predictive models. ResultsAmong 962 patients who underwent HCC resection, the incidence of severe postoperative complications was 12.7% (n = 122); in-hospital mortality was 2.9% (n = 28). Models that exclusively used preoperative data achieved AUC values of 0.89 (95%CI 0.85 to 0.92) and 0.90 (95%CI 0.84 to 0.96) to predict severe complications and mortality, respectively. Models that combined preoperative and postoperative data achieved AUC values of 0.93 (95%CI 0.91 to 0.96) and 0.92 (95%CI 0.86 to 0.97) for severe morbidity and mortality, respectively. The SHAP algorithm demonstrated that the factor most strongly predictive of severe morbidity and mortality was postoperative day 1 and 3 albumin-bilirubin (ALBI) scores. ConclusionIncorporation of perioperative data including ALBI scores using ML techniques can help risk-stratify patients undergoing resection of HCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.