Abstract

Background Out-of-hospital cardiac arrest (OHCA) is a major health problem worldwide, and neurologic injury remains the leading cause of morbidity and mortality among survivors of OHCA. The purpose of this study was to investigate whether a machine learning algorithm could detect complex dependencies between clinical variables in emergency departments in OHCA survivors and perform reliable predictions of favorable neurologic outcomes. Methods This study included adults (≥18 years of age) with a sustained return of spontaneous circulation after successful resuscitation from OHCA between 1 January 2004 and 31 December 2014. We applied three machine learning algorithms, including logistic regression (LR), support vector machine (SVM), and extreme gradient boosting (XGB). The primary outcome was a favorable neurological outcome at hospital discharge, defined as a Glasgow-Pittsburgh cerebral performance category of 1 to 2. The secondary outcome was a 30-day survival rate and survival-to-discharge rate. Results The final analysis included 1071 participants from the study period. For neurologic outcome prediction, the area under the receiver operating curve (AUC) was 0.819, 0.771, and 0.956 in LR, SVM, and XGB, respectively. The sensitivity and specificity were 0.875 and 0.751 in LR, 0.687 and 0.793 in SVM, and 0.875 and 0.904 in XGB. The AUC was 0.766 and 0.732 in LR, 0.749 and 0.725 in SVM, and 0.866 and 0.831 in XGB, for survival-to-discharge and 30-day survival, respectively. Conclusions Prognostic models trained with ML technique showed appropriate calibration and high discrimination for survival and neurologic outcome of OHCA without using prehospital data, with XGB exhibiting the best performance.

Highlights

  • Out-of-hospital cardiac arrest (OHCA) is a major public health problem worldwide, with an annual incidence of 50 to 100 per 100,000 in the general population [1]

  • OHCA has a high societal burden when compared to all other major causes of death, with an estimated 2.04 million years of potential life lost for men and 1.29 million years for women [2]

  • Despite advances in prehospital care, the prognosis for OHCA remains limited, with only 5.4%–20% [3,4,5] of patients surviving to hospital discharge

Read more

Summary

Introduction

Out-of-hospital cardiac arrest (OHCA) is a major public health problem worldwide, with an annual incidence of 50 to 100 per 100,000 in the general population [1]. Neurologic injury remains the leading cause of morbidity and mortality among survivors of OHCA, because of inadequate cerebral perfusion during cardiac arrest or reperfusion injury that occurs in the early postresuscitation phase. Many prehospital factors improve survival following OHCA, including witnessed cardiac arrest, bystander cardiopulmonary resuscitation (CPR), and initial heart rhythm [6,7,8]. Out-of-hospital cardiac arrest (OHCA) is a major health problem worldwide, and neurologic injury remains the leading cause of morbidity and mortality among survivors of OHCA. The purpose of this study was to investigate whether a machine learning algorithm could detect complex dependencies between clinical variables in emergency departments in OHCA survivors and perform reliable predictions of favorable neurologic outcomes. Prognostic models trained with ML technique showed appropriate calibration and high discrimination for survival and neurologic outcome of OHCA without using prehospital data, with XGB exhibiting the best performance

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.