Abstract
AimThis study aims to develop prediction models for in-hospital outcomes after non-surgical treatment among patients with moderate-to-severe traumatic brain injury (TBI). MethodWe conducted a retrospective review of patients hospitalized for moderate-to-severe TBI in our department from 2011 to 2020. Five machine learning (ML) algorithms and the conventional logistic regression (LR) model were employed to predict in-hospital mortality and the Glasgow Outcome Scale (GOS) functional outcomes. These models utilized clinical and routine blood data collected upon admission. ResultsThis study included a total of 196 patients who received only non-surgical treatment after moderate-to-severe TBI. When predicting mortality, ML models achieved area under the curve (AUC) values of 0.921 to 0.994 using clinical and routine blood data, and 0.877 to 0.982 using only clinical data. In comparison, LR models yielded AUCs of 0.762 and 0.730 respectively. When predicting the GOS outcome, ML models achieved AUCs of 0.870 to 0.915 using clinical and routine blood data, and 0.858 to 0.927 using only clinical data. In comparison, the LR model yielded AUCs of 0.798 and 0.787 respectively. Repeated internal validation showed that the contributions of routine blood data for prediction models may depend on different prediction algorithms and different outcome measurements. ConclusionThe study reported ML-based prediction models that provided rapid and accurate predictions on short-term outcomes after non-surgical treatment among patients with moderate-to-severe TBI. The study also highlighted the superiority of ML models over conventional LR models and proposed the complex contributions of routine blood data in such predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.