Abstract
AbstractReservoirs exert a profound influence on the cycling of dissolved organic matter (DOM) in inland waters by altering flow regimes. Biological incubations can help to disentangle the role that microbial processing plays in the DOM cycling within reservoirs. However, the complex DOM composition poses a great challenge to the analysis of such data. Here we tested if the interpretable machine learning (ML) methodologies can contribute to capturing the relationships between molecular reactivity and composition. We developed time‐specific ML models based on 7‐day and 30‐day incubations to simulate the biogeochemical processes in the Three Gorges Reservoir over shorter and longer water retention periods, respectively. Results showed that the extended water retention time likely allows the successive microbial degradation of molecules, with stochasticity exerting a non‐negligible effect on the molecular composition at the initial stage of the incubation. This study highlights the potential of ML in enhancing our interpretation of DOM dynamics over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.