Abstract

Roads degrade over time due to various factors such as traffic loads, environmental conditions, and the quality of materials used. Significant investments have been poured into road construction globally, necessitating regular evaluations and the implementation of maintenance and rehabilitation (M&R) strategies to keep the infrastructure performing at a satisfactory level. The development and refinement of performance prediction models are essential for forecasting the condition of pavements, especially to address longitudinal cracking distress, a major issue in thick asphalt pavements. This research leverages multiple machine learning methods to create models predicting non-wheel path (NWP) and wheel path (WP) longitudinal cracking using data from the Long-Term Pavement Performance (LTPP) program. This study highlights the marked differences in distress conditions between WP and NWP, underscoring the importance of precise models that cater to their unique features. Aging trends for both types of cracking were identified through correlation analysis, showing an increase in WP cracking with age and a higher initial International Roughness Index (IRI) linked to NWP cracking. Factors such as material characteristics, kinematic viscosity, pavement thickness, air voids, particle size distribution, temperature, KESAL, and asphalt properties were found to significantly influence both WP and NWP cracking. The Exponential Gaussian Process Regression (GPR) emerged as the best model for NWP cracking, showcasing exceptional accuracy with the lowest RMSE of 89.11, MSE of 7940.72, and an impressive R-Squared of 0.63. For WP cracking, the Squared Exponential GPR model was most effective, with the lowest RMSE of 12.00, MSE of 143.93, and a high R-Squared of 0.62. The GPR models, with specific kernels for each cracking type, proved their adaptability and efficiency in various pavement scenarios. A comparative analysis highlighted the superiority of our new machine learning model, which achieved an R2 of 0.767, outperforming previous empirical models, demonstrating the strength and precision of our machine learning approach in predicting longitudinal cracking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call