Abstract

To improve smile esthetics, clinicians should comprehensively analyze the face and ensure that the sizes selected for the maxillary anterior teeth are compatible with the available anthropological measurements. The inter commissural (ICW), interalar (IAW), intermedial-canthus (MCW), interlateral-canthus (LCW), and interpupillary (IPW) widths are used to determine the width of maxillary central incisors (CW). The aim of this study was to develop an automated approach using machine learning (ML) algorithms to predict central incisor width in a young Turkish population using anthropological measurements. This automation can contribute to digital dentistry and clinical decision-making. In the initial phase of this cross-sectional study, several ML regression models-including multiple linear regression (MLR), multi-layer-perceptron (MLP), decision-tree (DT), and random forest (RF) models-were validated to confirm the central width prediction accuracy. Datasets containing only male and female measurements, as well as combined were considered for ML model implementation, and the performance of each model was evaluated for an unbiased population dataset. Compared with the other algorithms, the RF algorithm showed improved performance for all cases, with an accuracy of 96%, which represents the percentage of correct predictions. The plot reveals the applicability of the RF model in predicting the CW from anthropological measurements irrespective of the candidate's sex. These results demonstrated the possibility of predicting central incisor widths based on anthropometric measurements using ML models. The accurate central incisor width prediction from these trials also indicates the applicability of the proposed model to be deployed for enhanced clinical decision-making.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.