Abstract
Degradation by wear and corrosion are frequently encountered in a variety of tribosystems, including materials and tools in forming operations. The combined effect of wear and corrosion, known as tribocorrosion, can result in accelerated material degradation. Interfacial conditions can affect this degradation. Tribocorrosion maps serve the purpose of identifying operating conditions at the interface for an acceptable rate of degradation. This paper proposes a machine learning-based approach to generate tribocorrosion maps, which can be used to predict tribosystem performance. Two tribocorrosion datasets from the published literature are used. The materials have been chosen based on the wide availability of their tribocorrosion data in the literature. First, unsupervised machine learning is used to identify and label clusters from tribocorrosion data. The identified clusters are then used to train a support vector classification model. The trained support vector machine is used to generate tribocorrosion maps. The generated maps are compared with those from the literature. The general approach can be applied to create tribocorrosion maps of materials widely used in material forming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.