Abstract

Evaluating the possibility of predicting chronic rhinosinusitis with nasal polyps (CRSwNP) disease course using Artificial Intelligence. We prospectively included patients undergoing first endoscopic sinus surgery (ESS) for nasal polyposis. Preoperative (demographic data, blood eosinophiles, endoscopy, Lund-Mackay, SNOT-22 and depression PHQ scores) and follow-up data was standardly collected. Outcome measures included SNOT-22, PHQ-9 and endoscopy perioperative sinus endoscopy (POSE) scores and two different microRNAs (miR-125b, miR-203a-3p) from polyp tissue. Based on POSE score, three labels were created (controlled: 0-7; partial control: 8-15; or relapse: 16-32). Patients were divided into train and test groups and using Random Forest, we developed algorithms for predicting ESS related outcomes. Based on data collected from 85 patients, the proposed Machine Learning-approach predicted whether the patient would present control, partial control or relapse of nasal polyposis at 18 months following ESS. The algorithm predicted ESS outcomes with an accuracy between 69.23% (for non-invasive input parameters) and 84.62% (when microRNAs were also included). Additionally, miR-125b significantly improved the algorithm's accuracy and ranked as one of the most important algorithm variables. We propose a Machine Learning algorithm which could change the prediction of disease course in CRSwNP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.