Abstract

IntroductionThe advent of digital and mobile health innovations, especially use of wearables for passive data collection, allows remote monitoring and creates an abundance of data. For this information to be interpretable, machine learning (ML) processes are necessary. Research questionCan a machine learning model successfully identify patients expected to have low gait speed in the early recovery period following joint replacement surgery? MethodsA commercial database from a smartphone-based care management platform passively collecting mobility data pre- and post-lower limb arthroplasty was used. We sought to create a ML model to predict gait speed recovery curves and identify patients at risk of poor gait speed outcome, a measure associated with range of motion and patient-reported outcomes. Model performance including sensitivity, specificity, precision, and accuracy were determined. Receiver operator curve (ROC) analysis was used to compare true and false positive rates. To benchmark our model, we compared threshold-based notifications based on the patient’s current gait speed. ResultsThe performance of the predictive model was significantly improved compared to baseline of threshold-based exceptions using current gait speed. The ML model currently provides 53 % precision, 88 % accuracy, 36 % sensitivity, and 95 % specificity on the held-out test set. The ROC analysis suggests good clinical performance (AUC=0.81). SignificanceUtilization of ML to predict gait recovery following total joint replacement is feasible and provides results with excellent specificity. This model will allow inclusion of additional data for retraining as patient populations evolve. Clinician feedback regarding notifications, including resulting actions and outcomes, can be used to further inform the model and improve clinical utility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.