Abstract

In patients with mild cognitive impairment (MCI), a lower level of cognitive function is associated with a higher likelihood of progression to dementia. In addition, gait disturbances and structural changes on brain MRI scans reflect cognitive levels. Therefore, we aimed to classify MCI based on cognitive level using gait parameters and brain MRI data. Eighty patients diagnosed with MCI from three dementia centres in Gangwon-do, Korea, were recruited for this study. We defined MCI as a Clinical Dementia Rating global score of ≥0.5, with a memory domain score of ≥0.5. Patients were classified as early-stage or late-stage MCI based on their mini-mental status examination (MMSE) z-scores. We trained a machine learning model using gait and MRI data parameters. The convolutional neural network (CNN) resulted in the best classifier performance in separating late-stage MCI from early-stage MCI; its performance was maximised when feature patterns that included multimodal features (GAIT + white matter dataset) were used. The single support time was the strongest predictor. Machine learning that incorporated gait and white matter parameters achieved the highest accuracy in distinguishing between late-stage MCI and early-stage MCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.