Abstract

In recent years, the escalating environmental challenges have contributed to a rising incidence of cancer. The precise anticipation of cancer incidence and mortality rates has emerged as a pivotal focus in scientific inquiry, exerting a profound impact on the formulation of public health policies. This investigation adopts a pioneering machine learning framework to address this critical issue, utilizing a dataset encompassing 72,591 comprehensive records that include essential variables such as age, case count, population size, race, gender, site, and year of diagnosis. Diverse machine learning algorithms, including decision trees, random forests, logistic regression, support vector machines, and neural networks, were employed in this study. The ensuing analysis revealed testing accuracies of 62.17%, 61.92%, 54.53%, 55.72%, and 62.30% for the respective models. This state-of-the-art model not only enhances our understanding of cancer dynamics but also equips researchers and policymakers with the capability of making meticulous projections concerning forthcoming cancer incidence and mortality rates. Considering sustainability, the application of this advanced machine learning framework emphasizes the importance of judiciously utilizing extensive and intricate databases. By doing so, it facilitates a more sustainable approach to healthcare planning, allowing for informed decision-making that takes into account the long-term ecological and societal impacts of cancer-related policies. This integrative perspective underscores the broader commitment to sustainable practices in both health research and public policy formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.