Abstract

The incidence of stage pN3b gastric cancer (GC) is low, and the clinical prognosis is poor, with a high rate of postoperative recurrence. Machine learning (ML) methods can predict the recurrence of GC after surgery. However, the prognostic significance for pN3b remains unclear. Therefore, we aimed to predict the recurrence of pN3b through ML models. This retrospective study included 336 patients with pN3b GC who underwent radical surgery. A 3-fold cross-validation was used to partition the participants into training and test cohorts. Linear combinations of new variable features were constructed using principal component analysis (PCA). Various ML algorithms, including random forest, support vector machine (SVM), logistic regression, multilayer perceptron (MLP), extreme gradient boosting (XGBoost), and Gaussian naive Bayes (GNB), were utilized to establish a recurrence prediction model. Model performance was evaluated using the receiver operating characteristic (ROC) curve and the area under the curve (AUC). Python was used for the analysis of ML algorithms. Nine principal components with a cumulative variance interpretation rate of 90.71% were identified. The output results of the test set showed that random forests had the highest AUC (0.927) for predicting overall recurrence with an accuracy rate of 80.5%. Random forests had the highest AUC (0.940) for predicting regional recurrence with an accuracy of 89.7%. For predicting distant recurrence, random forests had the highest AUC (0.896) with an accuracy of 84.3%. For peritoneal recurrence, random forests had the highest AUC (0.923) with an accuracy of 83.3%. ML can personalize the prediction of postoperative recurrence in patients with GC with stage pN3b.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call