Abstract
Experimental and computational data and field data obtained from measurements are often sparse and noisy. Consequently, interpolating unknown functions under these restrictions to provide accurate predictions is very challenging. This study compares machine-learning methods and cubic splines on the sparsity of training data they can handle, especially when training samples are noisy. We compare deviation from a true function f using the mean square error, signal-to-noise ratio and the Pearson R2 coefficient. We show that, given very sparse data, cubic splines constitute a more precise interpolation method than deep neural networks and multivariate adaptive regression splines. In contrast, machine-learning models are robust to noise and can outperform splines after a training data threshold is met. Our study aims to provide a general framework for interpolating one-dimensional signals, often the result of complex scientific simulations or laboratory experiments.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.