Abstract
PurposeQualitative findings in Crohn's disease (CD) can be challenging to reliably report and quantify. We evaluated machine learning methodologies to both standardize the detection of common qualitative findings of ileal CD and determine finding spatial localization on CT enterography (CTE). Materials and methodsSubjects with ileal CD and a CTE from a single center retrospective study between 2016 and 2021 were included. 165 CTEs were reviewed by two fellowship-trained abdominal radiologists for the presence and spatial distribution of five qualitative CD findings: mural enhancement, mural stratification, stenosis, wall thickening, and mesenteric fat stranding. A Random Forest (RF) ensemble model using automatically extracted specialist-directed bowel features and an unbiased convolutional neural network (CNN) were developed to predict the presence of qualitative findings. Model performance was assessed using area under the curve (AUC), sensitivity, specificity, accuracy, and kappa agreement statistics. ResultsIn 165 subjects with 29,895 individual qualitative finding assessments, agreement between radiologists for localization was good to very good (κ = 0.66 to 0.73), except for mesenteric fat stranding (κ = 0.47). RF prediction models had excellent performance, with an overall AUC, sensitivity, specificity of 0.91, 0.81 and 0.85, respectively. RF model and radiologist agreement for localization of CD findings approximated agreement between radiologists (κ = 0.67 to 0.76). Unbiased CNN models without benefit of disease knowledge had very similar performance to RF models which used specialist-defined imaging features. ConclusionMachine learning techniques for CTE image analysis can identify the presence, location, and distribution of qualitative CD findings with similar performance to experienced radiologists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.