Abstract

IntroductionGenome‐wide association studies (GWAS) in late onset Alzheimer's disease (LOAD) provide lists of individual genetic determinants. However, GWAS do not capture the synergistic effects among multiple genetic variants and lack good specificity.MethodsWe applied tree‐based machine learning algorithms (MLs) to discriminate LOAD (>700 individuals) and age‐matched unaffected subjects in UK Biobank with single nucleotide variants (SNVs) from Alzheimer's disease (AD) studies, obtaining specific genomic profiles with the prioritized SNVs.ResultsMLs prioritized a set of SNVs located in genes PVRL2, TOMM40, APOE, and APOC1, also influencing gene expression and splicing. The genomic profiles in this region showed interaction patterns involving rs405509 and rs1160985, also present in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. rs405509 located in APOE promoter interacts with rs429358 among others, seemingly neutralizing their predisposing effect.DiscussionOur approach efficiently discriminates LOAD from controls, capturing genomic profiles defined by interactions among SNVs in a hot‐spot region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.