Abstract
The study aimed to evaluate the predictive validity of the neural network (NN) method for presurgical mapping of motor areas using resting-state functional MRI (rs-fMRI) data of patients with brain tumor located in the perirolandic cortex (PRC). A total of 109 patients with brain tumors occupying PRC underwent rs-fMRI and hand movement task-based fMRI (tb-fMRI) scans. Using a NN model trained on fMRI data of 47 healthy controls, individual task activation maps were predicted from their rs-fMRI data. NN-predicted maps were compared with task activation and independent component analysis (ICA)-derived maps. Spatial Pearson's correlation coefficients (CC) matrices and Dice coefficients (DC) between task activation and predicted activation using NN (DCNN_Act) and ICA (DCICA_Act) were calculated and compared using non-parametric tests. The effects of tumor types and head motion on predicted maps were demonstrated. The CC matrix of NN-predicted maps showed higher diagonal values compared with ICA-derived maps (p < 0.001). DCNN_Act were higher than DCICA_Act (p < 0.001) for patients with or without motor deficits. Lower DCs were found in subjects with head motion greater than one voxel. DCs were higher on the nontumor side than on the tumor side (p < 0.001), especially in the glioma group compared with meningioma and metastatic groups. This study indicated that the NN approach could predict individual motor activation using rs-fMRI data and could have promising clinical applications in brain tumor patients with anatomical and functional reorganizations. • The neural network machine learning approach successfully predicted hand motor activation in patients with a tumor in the perirolandic cortex, despite space-occupying effects and possible functional reorganization. • Compared to the conventional independent component analysis, the neural network approach utilizing resting-state fMRI data yielded a higher correlation to the active task hand activation data. • The Dice coefficient of machine learning-predicted activation vs. task fMRI activation was different between tumor and nontumor side, also between tumor types, which might indicate different effects of possible neurovascular uncoupling on resting-state and task fMRI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: European Radiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.