Abstract

Simulations of colloidal suspensions consisting of mesoscopic particles and smaller species such as ions or depletants are computationally challenging as different length and time scales are involved. Here, we introduce a machine learning (ML) approach in which the degrees of freedom of the microscopic species are integrated out and the mesoscopic particles interact with effective many-body potentials, which we fit as a function of all colloid coordinates with a set of symmetry functions. We apply this approach to a colloid-polymer mixture. Remarkably, the ML potentials can be assumed to be effectively state-independent and can be used in direct-coexistence simulations. We show that our ML method reduces the computational cost by several orders of magnitude compared to a numerical evaluation and accurately describes the phase behavior and structure, even for state points where the effective potential is largely determined by many-body contributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.