Abstract

This project aims to develop a comprehensive and versatile machine learning library in C++ tailored to address the diverse needs of developers and researchers in the field. The library encompasses a robust set of core machine learning algorithms, encompassing supervised, unsupervised, and reinforcement learning techniques. Additionally, it incorporates essential data preprocessing tools to streamline data manipulation and feature engineering tasks, along with model evaluation capabilities crucial for assessing algorithm performance. The library's primary focus is on providing a rich suite of machine learning algorithms, This empowers users to effectively prepare data for training machine learning models. Additionally, the library provides tools for data splitting, and model evaluation to ensure reliable and robust model performance assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.