Abstract
Kinetic energy (KE) functional is crucial to speed up density functional theory calculation. However, deriving it accurately through traditional physics reasoning is challenging. We develop a generally applicable KE functional estimator for a one-dimensional (1D) extended system using a machine learning method. Our end-to-end solution combines the dimensionality reduction method with the Gaussian process regression, and simple scaling method to adapt to various 1D lattices. In addition to reaching chemical accuracy in KE calculation, our estimator also performs well on KE functional derivative prediction. Integrating this machine learning KE functional into the current orbital free density functional theory scheme is able to provide us with expected ground state electron density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.