Abstract

To boost the application of machine learning (ML) techniques for credit scoring models, the blackbox problem should be addressed. The primary aim of this paper is to propose a measure based on counterfactuals to evaluate the interpretability of a ML credit scoring technique. Counterfactuals assist with understanding the model with regard to the classification decision boundaries and evaluate model robustness. The second contribution is the development of a data perturbation technique to generate a stress scenario.We apply these two proposals to a dataset on UK unsecured personal loans to compare logistic regression and stochastic gradient boosting (SBG). We show that training a blackbox model (SGB) as conditioned on our data perturbation technique can provide insight into model performance under stressed scenarios. The empirical results show that our interpretability measure is able to capture the classification decision boundary, unlike AUC and the classification accuracy widely used in the banking sector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.