Abstract

For improving manufacturing efficiency and minimizing costs, design for additive manufacturing (AM) has been accordingly proposed. The existing design for AM methods are mainly surrogate model based. Due to the increasingly available data nowadays, machine learning (ML) has been applied to medical diagnosis, image processing, prediction, classification, learning association, etc. A variety of studies have also been carried out to use machine learning for optimizing the process parameters of AM with corresponding objectives. In this paper, a ML integrated design for AM framework is proposed, which takes advantage of ML that can learn the complex relationships between the design and performance spaces. Furthermore, the primary advantage of ML over other surrogate modelling methods is the capability to model input–output relationships in both directions. That is, a deep neural network can model property–structure relationships, given structure–property input–output data. A case study was carried out to demonstrate the effectiveness of using ML to design a customized ankle brace that has a tunable mechanical performance with tailored stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.