Abstract

AbstractEffective soil conditioning is critical for mechanized shield tunneling, yet the selection of conditioning parameters remains experience‐oriented. This study presents a machine learning–informed soil conditioning strategy, aiming at enabling automatic decision‐making for soil conditioning during tunneling. The proposed procedure includes feature engineering to process raw data, the selection of an optimal model, and a committee‐based uncertainty quantification strategy to evaluate the reliability of models. High‐dimensional data visualization techniques are leveraged to examine the influence of data distribution on the model's performance. Results demonstrate that feature engineering and the selection of models lay a foundation for machine learning–enabled automatic soil conditioning, while historical soil conditioning parameters should be incorporated in models to account for time‐dependent features during tunneling. The committee‐based uncertainty quantification strategy can effectively identify the reliability of both interpolated and extrapolated predictions. The proposed data‐driven soil conditioning framework can promote the application of machine learning toward automating earth pressure balance (EPB) shield tunneling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.