Abstract
This study demonstrates the use of machine learning as a potential tool to efficiently develop new biomedical alloys with improved corrosion resistance by exploring the whole compositional space in the HfNbTaTiZr system. Owing to the small volume and inherited uncertainty of available corrosion data in the literature, k-fold cross-validation and bootstrapping were used to quantify the uncertainty of models and select a robust one. Potentiodynamic polarization experiments were performed on the predicted composition in simulated body fluid at 37 ± 1 °C for validation, demonstrating the new alloy's superior corrosion properties with a homogeneous microstructure as opposed to the dendritic structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.