Abstract
AbstractArtificial intelligence (AI) and machine learning (ML) have been recently applied extensively in various disciplines of vadose zone hydrology. However, not much attention has been paid to their database‐dependent accuracy and uncertainty, reproducibility, and delivery, which undermines their applications to real‐world problems. We discuss lessons from the past and emphasize the need for and lack of fundamental protocols (i.e., detailed clarification on data processing, ML models accessibility, and a clear path for reproducing results).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.