Abstract

Compelling experimental evidence suggests the existence of new physics beyond the well-established and tested standard model of particle physics. Various current and upcoming experiments are searching for signatures of new physics. Despite the variety of approaches and theoretical models tested in these experiments, what they all have in common is the very large volume of complex data that they produce. This data challenge calls for powerful statistical methods. Machine learning has been in use in high-energy particle physics for well over a decade, but the rise of deep learning in the early 2010s has yielded a qualitative shift in terms of the scope and ambition of research. These modern machine learning developments are the focus of the present Review, which discusses methods and applications for new physics searches in the context of terrestrial high-energy physics experiments, including the Large Hadron Collider, rare event searches and neutrino experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.