Abstract

This review analyzes the application of machine learning (ML) in oncological pharmacogenomics, focusing on customizing chemotherapy treatments. It explores how ML can analyze extensive genomic, proteomic, and other omics datasets to identify genetic patterns associated with drug responses. This, in turn, facilitates personalized therapies that are more effective and have fewer side effects. Recent studies have emphasized ML's revolutionary role of ML in personalized oncology treatment by identifying genetic variability and understanding cancer pharmacodynamics. Integrating ML with electronic health records and clinical data shows promise in refining chemotherapy recommendations by considering the complex influencing factors. Although standard chemotherapy depends on population-based doses and treatment regimens, customized techniques use genetic information to tailor treatments for specific patients, potentially enhancing efficacy and reducing adverse effects.However, challenges, such as model interpretability, data quality, transparency, ethical issues related to data privacy, and health disparities, remain. Machine learning has been used to transform oncological pharmacogenomics by enabling personalized chemotherapy treatments. This review highlights ML's potential of ML to enhance treatment effectiveness and minimize side effects through detailed genetic analysis. It also addresses ongoing challenges including improved model interpretability, data quality, and ethical considerations. The review concludes by emphasizing the importance of rigorous clinical trials and interdisciplinary collaboration in the ethical implementation of ML-driven personalized medicine, paving the way for improved outcomes in cancer patients and marking a new frontier in cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.