Abstract

Applications of machine learning (ML) in translational medicine include therapeutic drug creation, diagnostic development, surgical planning, outcome prediction, and intraoperative assistance. Opportunities in the neurosciences are rich given advancement in our understanding of the brain, expanding indications for intervention, and diagnostic challenges often characterized by multiple clinical and environmental factors. We present a review of ML in neuro-oncology, epilepsy, Alzheimer's disease, and schizophrenia to highlight recent progression in these field, optimizing machine learning capabilities in their current forms. Supervised learning models appear to be the most commonly incorporated algorithm models for machine learning across the reviewed neuroscience disciplines with primary aim of diagnosis. Accuracy ranges are high from 63% to 99% across all algorithms investigated. Machine learning contributions to neurosurgery, neurology, psychiatry, and the clinical and basic science neurosciences may enhance current medical best practices while also broadening our understanding of dynamic neural networks and the brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.