Abstract

Schizophrenia (SZ) is a mental heterogeneous psychiatric disorder with unknown cause. Neuroscientists postulate that it is related to brain networks. Recently, scientists applied machine learning (ML) and artificial intelligence for the detection, monitoring, and prognosis of a range of diseases, including SZ, because these techniques show a high performance in discovering an association between disease symptoms and disease. Regions of the brain have significant connections to the symptoms of SZ. ML has the power to detect these associations. ML interests researchers because of its ability to reduce the number of input features when the data are high dimensional. In this paper, an overview of ML models for detecting SZ disorder is provided. Studies are presented that applied magnetic resonance imaging data and physiological signals as input data. ML is utilized to extract significant features for predicting and monitoring SZ. Reviewing a large number of studies shows that a support vector machine, deep neural network, and random forest predict SZ with a high accuracy of 70%–90%. Finally, the collected results show that ML methods provide reliable answers for clinicians when making decisions about SZ patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.