Abstract

Haptic gloves with force feedback represent new and immersive devices for Virtual Reality (VR). They enable interaction with virtual objects and have a positive impact on virtual engineering processes. The position of the hand and its specific finger positions, such as grip types, are tracked in virtual space dur-ing assembly processes. Implementing rule-based recognition of these grip types is complex and error-prone due to hard- and software limitations. Ma-chine Learning (ML) can support engineers during the use and implementation of these applications by classifying user input as specific grip types. Two ML algorithms, one Neural Network (NN) and one Support Vector Machine (SVM), that detect nine grip types at runtime by only using the joint angles of the gloves exoskeleton as features, were developed and compared with a rule-based algorithm. Our research shows, that the ML algorithm reach a very high accuracy with only reading one feature compared to the rule-based algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.