Abstract

Ion mobility spectrometry (IMS) is the method of choice to detect trace amounts of explosives in most airports and border crossing settings. For most explosives, the IMS detection limits are suitably low enough to meet security requirements. However, for some explosive families, the selectivity is not sufficient. One such family is nitrate-based explosives, where discrimination between various nitrate threats and ambient nitrates is challenging. Using a small database, machine learning methods were utilized to examine the extent of improvement in IMS selectivity for detection of nitrate-based explosives. Five classes were considered in this preliminary study: ammonium nitrate (AN), an ∼95:5 mixture of AN and fuel oil (ANFO), urea nitrate (UN), nitrate due to environmental pollution, and samples that did not contain any explosive (blanks). The preliminary results clearly show that the incorporation of machine learning methods can lead to a significant improvement in IMS selectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.