Abstract

IntroductionChemotherapy and radiotherapy can produce treatment‐related effects, which may mimic tumour progression. Advances in Artificial Intelligence (AI) offer the potential to provide a more consistent approach of diagnosis with improved accuracy. The aim of this study was to determine the efficacy of machine learning models to differentiate treatment‐related effects (TRE), consisting of pseudoprogression (PsP) and radiation necrosis (RN), and true tumour progression (TTP).MethodsThe systematic review was conducted in accordance with PRISMA‐DTA guidelines. Searches were performed on PubMed, Scopus, Embase, Medline (Ovid) and ProQuest databases. Quality was assessed according to the PROBAST and CLAIM criteria. There were 25 original full‐text journal articles eligible for inclusion.ResultsFor gliomas: PsP versus TTP (16 studies, highest AUC = 0.98), RN versus TTP (4 studies, highest AUC = 0.9988) and TRE versus TTP (3 studies, highest AUC = 0.94). For metastasis: RN vs. TTP (2 studies, highest AUC = 0.81). A meta‐analysis was performed on 9 studies in the gliomas PsP versus TTP group using STATA. The meta‐analysis reported a high sensitivity of 95.2% (95%CI: 86.6–98.4%) and specificity of 82.4% (95%CI: 67.0–91.6%).ConclusionTRE can be distinguished from TTP with good performance using machine learning‐based imaging models. There remain issues with the quality of articles and the integration of models into clinical practice. Future studies should focus on the external validation of models and utilize standardized criteria such as CLAIM to allow for consistency in reporting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.