Abstract

We propose a learning-based image processing method for particle size measurement based on digital holography in this paper. The proposed approach uses a modified U-net architecture with recorded holograms, hologram reconstructed to each longitudinal location, and minimum intensity projection in longitudinal direction as inputs to produce outputs consisting of in-focus particles at each longitudinal location and their 2D centroids. A soft generalized dice loss is used for the particle size channel and a total variation regularized mean squared error loss is employed for the 2D centroids channel. The proposed method has been assessed using synthetic, manually-labeled experimental, and real experimental holograms. The results demonstrate that our approach have better performance in comparison to the state-of-the-art non-machine-learning methods in terms of particle extraction rate and positioning accuracy. Our learning-based approach can be readily extended to other types of image-based particle size measurement tasks such as shadowgraph imaging and defocusing imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.