Abstract

Highly selective C-H functionalization remains an ongoing challenge in organic synthetic methodologies. Biocatalysts are robust tools for achieving these difficult chemical transformations. Biocatalyst engineering has often required directed evolution or structure-based rational design campaigns to improve their activities. In recent years, machine learning has been integrated into these workflows to improve the discovery of beneficial enzyme variants. In this work, we combine a structure-based machine-learning algorithm with classical molecular dynamics simulations to down select mutations for rational design of a non-heme iron-dependent lysine dioxygenase, LDO. This approach consistently resulted in functional LDO mutants and circumvents the need for extensive study of mutational activity before-hand. Our rationally designed single mutants purified with up to 2-fold higher yields than WT and displayed higher total turnover numbers (TTN). Combining five such single mutations into a pentamutant variant, LPNYI LDO, leads to a 40% improvement in the TTN (218±3) as compared to WT LDO (TTN = 160±2). Overall, this work offers a low-barrier approach for those seeking to synergize machine learning algorithms with pre-existing protein engineering strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.