Abstract

For styrenic random copolymers, the glass transition temperature, Tg, is an important thermophysical parameter, which is sometimes difficult to measure and determine by experiments. Approaches based on data-driven modeling provide alternative methods to predict Tg in a fast and robust way. The Gaussian process regression (GPR) model is investigated to present the statistical relationship between important quantum chemical descriptors and glass transition temperature for styrenic random copolymers. 48 samples with Tg that have been measured experimentally are explored, which range from 246 K to 426 K. The modeling approach demonstrates high accuracy and stability, and provides a novel and promising tool for efficient and low-cost estimations of copolymer Tg values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.