Abstract

Assessment of roadway safety in real-time is a necessary component for providing proactive safety countermeasures to ensure the continued safety and efficiency of roadways. A framework for utilizing data from connected vehicles and other probe sources is proposed in this study. Connected vehicles present an opportunity to provide live fingerprinting and activity monitoring on roadways. Taking advantage of high-resolution trajectory data streaming directly from connected vehicles, variables are extracted and the relationship with crashes are explored utilizing statistical and machine learning models. Hard acceleration events, in conjunction with segment miles are shown to have strong positive correlations with historical crash outcomes as proven by OLS, Poisson and Gradient Booster regression models. An XGBoost classification model is then trained to predict the real-time instances of crash outcomes at 5 min temporal bins with high levels of accuracy when trained with data including the real-time segment speed, reference speed, segment miles, a segment crash risk factor and other variables related to the difference in speeds between consecutive segments as well as the hour of the day. A weighted ensemble model achieved the best performance with an accuracy of 0.95. The results present evidence that the framework can capitalize on the richness of data available via connected vehicles and is implementable as a component in Advanced Traffic Management Systems for the analysis of safety critical situations in real-time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.