Abstract
BackgroundThe gut microbiome has proven to be an important factor affecting obesity; however, it remains a challenge to identify consistent biomarkers across geographic locations and perform precisely targeted modulation for obese individuals.ResultsThis study proposed a systematic machine learning framework and applied it to 870 human stool metagenomes across five countries to obtain comprehensive regional shared biomarkers and conduct a personalized modulation analysis. In our pipeline, a heterogeneous ensemble feature selection diagram is first developed to determine an optimal subset of biomarkers through the aggregation of multiple techniques. Subsequently, a deep reinforcement learning method was established to alter the targeted composition to the desired healthy target. In this manner, we can realize personalized modulation by counterfactual inference. Consequently, a total of 42 species were identified as regional shared biomarkers, and they showed good performance in distinguishing obese people from the healthy group (area under curve (AUC) =0.85) when demonstrated on validation datasets. In addition, by pooling all counterfactual explanations, we found that Akkermansia muciniphila, Faecalibacterium prausnitzii, Prevotella copri, Bacteroides dorei, Bacteroides eggerthii, Alistipes finegoldii, Alistipes shahii, Eubacterium sp. _CAG_180, and Roseburia hominis may be potential broad-spectrum targets with consistent modulation in the multi-regional obese population.ConclusionsThis article shows that based on our proposed machine-learning framework, we can obtain more comprehensive and accurate biomarkers and provide modulation analysis for the obese population. Moreover, our machine-learning framework will also be very useful for other researchers to further obtain biomarkers and perform counterfactual modulation analysis in different diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.