Abstract
The emergence of transition phenomena between metastable states induced by noise plays a fundamental role in a broad range of nonlinear systems. The computation of the most probable paths is a key issue to understanding the mechanism of transition behaviors. The shooting method is a common technique for this purpose to solve the Euler-Lagrange equation for the associated action functional, while losing its efficacy in high-dimensional systems. In the present work, we develop a machine learning framework to compute the most probable paths in the sense of Onsager-Machlup action functional theory. Specifically, we reformulate the boundary value problem of a Hamiltonian system and design a neural network to remedy the shortcomings of the shooting method. The successful applications of our algorithms to several prototypical examples demonstrate its efficacy and accuracy for stochastic systems with both (Gaussian) Brownian noise and (non-Gaussian) Lévy noise. This approach is effective in exploring the internal mechanisms of rare events triggered by random fluctuations in various scientific fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.