Abstract
Dust storms are significant atmospheric events that impact air quality, public health, and visibility, especially in arid Saudi Arabia. This study aimed to develop dust storm frequency predictions for Riyadh, Jeddah, and Dammam by integrating meteorological and environmental variables. Our models include multiple linear regression, support vector machine, gradient boosting regression tree, long short-term memory (LSTM), and temporal convolutional network (TCN). This study highlights the effectiveness of LSTM and TCN models in capturing the complex temporal dynamics of dust storms and demonstrates that they outperform traditional methods, as evidenced by their lower mean absolute error (MAE) and root mean square error (RMSE) values and higher R2 score. In Riyadh, the TCN model demonstrates its remarkable performance, with an R2 score of 0.51, an MAE of 2.80, and an RMSE of 3.48, highlighting its precision, adaptability, and responsiveness to changes in dust storm frequency. Conversely, in Dammam, the LSTM model proved to be the most accurate, achieving an MAE of 3.02, RMSE of 3.64, and R2 score of 0.64. In Jeddah, the LSTM model also exhibited an MAE of 2.48 and an RMSE of 2.96. This research shows the potential of using deep learning models to improve the accuracy and reliability of dust storm frequency forecasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.