Abstract
ObjectivesThis study aimed to establish a machine learning prediction model that can be used to predict bone metastasis (BM) in patients with newly diagnosed thyroid cancer (TC).MethodsDemographic and clinicopathologic variables of TC patients in the Surveillance, Epidemiology, and End Results database from 2010 to 2016 were retrospectively analyzed. On this basis, we developed a random forest (RF) algorithm model based on machine‐learning. The area under receiver operating characteristic curve (AUC), accuracy score, recall rate, and specificity are used to evaluate and compare the prediction performance of the RF model and the other model.ResultsA total of 17,138 patients were included in the study, with 166 (0.97%) developed bone metastases. Grade, T stage, histology, race, sex, age, and N stage were the important prediction features of BM. The RF model has better predictive performance than the other model (AUC: 0.917, accuracy: 0.904, recall rate: 0.833, and specificity: 0.905).ConclusionsThe RF model constructed in this study could accurately predict bone metastases in TC patients, which may provide clinicians with more personalized clinical decision‐making recommendations. Machine learning technology has the potential to improve the development of BM prediction models in TC patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.