Abstract

Nanoparticle corona phase (CP) design offers a unique approach toward molecular recognition (MR) for sensing applications. Single-walled carbon nanotube (SWCNT) CPs can additionally transduce MR through its band-gap photoluminescence (PL). While DNA oligonucleotides have been used as SWCNT CPs, no generalized scheme exists for MR prediction de novo due to their sequence-dependent three-dimensional complexity. This work generated the largest DNA-SWCNT PL response library of 1408 elements and leveraged machine learning (ML) techniques to understand MR and DNA sequence dependence through local (LFs) and high-level features (HLFs). Out-of-sample analysis of our ML model showed significant correlations between model predictions and actual sensor responses for 6 out of 8 experimental conditions. Different HLF combinations were found to be uniquely correlated with different analytes. Furthermore, models utilizing both LFs and HLFs show improvement over that with HLFs alone, demonstrating that DNA-SWCNT CP engineering is more complex than simply specifying molecular properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.