Abstract

To develop a system for preoperative prediction of individual activations of motor and speech areas in patients with brain gliomas using resting state fMRI (rsfMRI), task-based fMRI (tb-fMRI), direct cortical stimulation and machine learning methods. Thirty-three patients with gliomas (19 females and 14 males aged 19 - 540) underwent DCS-assisted resection of tumor (19 ones with lesion of motor zones and 14 patients with lesions of speech areas). Awake craniotomy was performed in 14 cases. Preoperative mapping was performed according to special MRI protocol (T1, tb-fMRI, rs-fMRI). In DCS, we obtained 332 stimulations including 173 with positive response. According to comparison of functional activations between rs-fMRI and tb-fMRI, there were more positive DCS responses predicted by rs-fMRI (132 vs 112). Non-response stimulation sites (negative) prevailed in tb-fMRI activations (69 vs 44). The developed method with machine learning based on resting state fMRI showed greater sensitivity compared to classical task-based fMRI after verification with DCS: 0.72 versus 0.66 (p<0.05) for identifying the speech zones and 0.79 versus 0.62 (p<0.05) for motor areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.