Abstract

This paper presents the behavior of a 102-year-old truss bridge under wind loading. To examine the wind-related responses of the historical bridge, state-of-the-art and traditional modeling methodologies are employed: a machine learning approach called random forest and three-dimensional finite element analysis. Upon training and validating these modeling methods using experimental data collected from the field, member-level forces and stresses are predicted in tandem with wind speeds inferred by Weibull distributions. The intensities of the in-situ wind are dominated by the location of sampling, and the degree of partial fixities at the supports of the truss system is found to be insignificant. Compared with quadrantal pressure distributions, uniform pressure distributions better represent the characteristics of wind-induced loadings. The magnitude of stress in the truss members is enveloped by the stress range in line with the occurrence probabilities of the characterized wind speed between 40% and 60%. The uneven wind distributions cause asymmetric displacements at the supports.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call