Abstract

In previous research, we carried out an analysis using the FBProphet model to predict the COVID-19 outbreak in Indonesia. The application of the FBProphet model to time series data is considered quite good because it produces a MAPE of 22.60% with a linear distribution. Additionally, based on the pattern in the previous dataset and the total number of active cases currently stands at 2,606, in this research we tried to use the Linear Regression (LR) model as a comparison with the FBProphet model by using additional data from the same data source, KAWALCOVID19 website. Data collection started from March 2, 2020 to December 19, 2021. The aim of this research is the same as previous research, namely predicting the spread of COVID-19. The analysis process is carried out by preprocessing the data by validating missing data and validating the format of the data variables. Then carry out descriptive analysis and data visualization so that it can be seen that in this 657 data there is a fluctuates data that non-periodically from July to August 2021. Next, model analysis is carried out using FBProphet and LR and validating the results of each model. The research results are in the form of evaluation metrics where the LR model gets better RMSE, MAE and MAPE values compared to FBProphet, namely 292.91; 178, 81 and 12.79%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.