Abstract
Objective Immune checkpoint inhibitors, such as programmed death-1/ligand-1 (PD-1/L1), exhibited autoimmune-like disorders, and hyperglycemia was on the top of grade 3 or higher immune-related adverse events. Machine learning is a model from past data for future data prediction. From post-marketing monitoring, we aimed to construct a machine learning algorithm to efficiently and rapidly predict hyperglycemic adverse reaction in patients using PD-1/L1 inhibitors. Methods In original data downloaded from Food and Drug Administration Adverse Event Reporting System (US FAERS), a multivariate pattern classification of support vector machine (SVM) was used to construct a classifier to separate adverse hyperglycemic reaction patients. With correct core SVM function, a 10-fold 3-time cross validation optimized parameter value composition in model setup with R language software. Results The SVM prediction model was set up from the number type/number optimization method, as well as the kernel and type of “rbf” and “nu-regression” composition. Two key values (nu and gamma) and case number displayed high adjusted r2 in curve regressions (nu = 0.5649 × e(− (case/6984)), gamma = 9.005 × 10−4 × case − 4.877 × 10−8 × case2). This SVM model with computable parameters greatly improved the assessing indexes (accuracy, F1 score, and kappa) as well as coequal sensitivity and the area under the curve (AUC). Conclusion We constructed an effective machine learning model based on compositions of exact kernels and computable parameters; the SVM prediction model can noninvasively and precisely predict hyperglycemic adverse drug reaction (ADR) in patients treated with PD-1/L1 inhibitors, which could greatly help clinical practitioners to identify high-risk patients and perform preventive measurements in time. Besides, this model setup process provided an analytic conception for promotion to other ADR prediction, such ADR information is vital for outcome improvement by identifying high-risk patients, and this machine learning algorithm can eventually add value to clinical decision making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.