Abstract
We aimed to establish an effective machine learning (ML) model for predicting the risk of distant metastasis (DM) in medullary thyroid carcinoma (MTC). Demographic data of MTC patients were extracted from the Surveillance, Epidemiology, and End Results (SEER) database of the National Institutes of Health between 2004 and 2015 to develop six ML algorithm models. Models were evaluated based on accuracy, precision, recall rate, F1-score, and area under the receiver operating characteristic curve (AUC). The association between clinicopathological characteristics and target variables was interpreted. Analyses were performed using traditional logistic regression (LR). In total, 2049 patients were included and 138 developed DM. Multivariable LR showed that age, sex, tumor size, extrathyroidal extension, and lymph node metastasis were predictive features for DM in MTC. Among the six ML models, the random forest (RF) had the best predictability in assessing the risk of DM in MTC, with an accuracy, precision, recall rate, F1-score, and AUC higher than those of the traditional binary LR model. RF was superior to traditional LR in predicting the risk of DM in MTC and can provide a valuable reference for clinicians in decision-making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.