Abstract

Parkinson's disease (PD) is an age-related neurodegenerative condition characterized mostly by motor symptoms. Although a wide range of non-motor symptoms (NMS) are frequently experienced by PD patients. One of the important and common NMS is cognitive impairment, which is measured using different cognitive scales. Monitoring cognitive impairment and its decline in PD is essential for patient care and management. In this study, our goal is to identify the most effective cognitive scale in predicting cognitive decline over a 5-year timeframe initializing clinical biomarkers and DAT SPECT. Machine Learning has previously shown superior performance in image and clinical data classification and detection. In this study, we propose to use machine learning with different types of data, such as DAT SPECT and clinical biomarkers, to predict PD-CD based on various cognitive scales. We collected 330 DAT SPECT images and their clinical data in baseline, years 2,3,4, and 5 from Parkinson's Progression Markers Initiative (PPMI). We then designed a 3D Autoencoder to extract deep radiomic features (DF) from DAT SPECT images, and we then concatenated it with 17 clinical features (CF) to predict cognitive decline based on Montreal Cognitive Assessment (MoCA) and The Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS-I). The utilization of MoCA as a cognitive decline scale yielded better performance in various years compared to MDS-UPDRS-I. In year 4, the application of the deep radiomic feature resulted in the highest achievement, with a cross-validation AUC of 89.28, utilizing the gradient boosting classifier. For the MDS-UPDRS-I scale, the highest achievement was obtained by utilizing the deep radiomic feature, resulting in a cross-validation AUC of 81.34 with the random forest classifier. The study findings indicate that the MoCA scale may be a more effective predictor of cognitive decline within 5 years compared to MDS-UPDRS-I. Furthermore, deep radiomic features had better performance compared to sole clinical biomarkers or clinical and deep radiomic combined. These results suggest that using the MoCA score and deep radiomic features extracted from DAT SPECT could be a promising approach for identifying individuals at risk for cognitive decline in four years. Future research is needed to validate these findings and explore their utility in clinical practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.