Abstract
Chagas disease is a severe parasitic illness that is prevalent in Latin America and often goes unaddressed. Early detection and treatment are critical in preventing the progression of the illness and its associated life-threatening complications. In recent years, machine learning algorithms have emerged as powerful tools for disease prediction and diagnosis. In this study, we developed machine learning algorithms to predict the risk of Chagas disease based on five general factors: age, gender, history of living in a mud or wooden house, history of being bitten by a triatomine bug, and family history of Chagas disease. We analyzed data from the Retrovirus Epidemiology Donor Study (REDS) to train five popular machine learning algorithms. The sample comprised 2,006 patients, divided into 75% for training and 25% for testing algorithm performance. We evaluated the model performance using precision, recall, and AUC-ROC metrics. The Adaboost algorithm yielded an AUC-ROC of 0.772, a precision of 0.199, and a recall of 0.612. We simulated the decision boundary using various thresholds and observed that in this dataset a threshold of 0.45 resulted in a 100% recall. This finding suggests that employing such a threshold could potentially save 22.5% of the cost associated with mass testing of Chagas disease. Our findings highlight the potential of applying machine learning to improve the sensitivity and effectiveness of Chagas disease diagnosis and prevention. Furthermore, we emphasize the importance of integrating socio-demographic and environmental factors into neglected disease prediction models to enhance their performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.