Abstract

Global climate change is likely to influence evapotranspiration (ET); as a result, many ET calculation methods may not give accurate results under different climatic conditions. The main objective of this study is to verify the suitability of machine learning (ML) models as calculation methods for pan evaporation modeling on the macro-regional scale. The most significant PE changes in the different agroclimatic zones of the Slovak Republic were compared, and their considerable impacts were analyzed. On the basis of the agroclimatic zones, 35 meteorological stations distributed across Slovakia were classified into six macro-regions. For each of the meteorological stations, 11 variables were applied during the vegetation period in the years from 2010 to 2020 with a daily time step. The performance of eight different ML models—the neural network (NN) model, the autoneural network (AN) model, the decision tree (DT) model, the Dmine regression (DR) model, the DM neural network (DM NN) model, the gradient boosting (GB) model, the least angle regression (LARS) model, and the ensemble model (EM)—was employed to predict PE. It was found that the different models had diverse prediction accuracies in various geographical locations. In this study, the results of the values predicted by the individual models are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.